/**********************************************************************/ /* Maxima file to check the derivation in "How to derive the field equations for three new kinds of gravitons" Public domain, by David Parker, daveparker@pgu.org Version 1, Dec 3, 2024. Version 2, Dec 23, 2024: updated some of the comments. Command line used to run this file under Windows (the command lines for Macintosh and Linux should be similar): maxima -b gravitons_v2.mac File takes about 2.5 minutes to run on a laptop from 2020. Homepage for Maxima at: https://maxima.sourceforge.io/index.html */ display2d:false$ /**********************************************************************/ /* X (coordinate tensor), G (metric tensor), and inverse G (GInv). */ /* Maxima matrices are indexed starting from 1, but tensors are usually indexed starting from 0, so define matrix and tensor versions of X, G, and GInv. */ XMatrix: matrix( [ X0 ], [ X1 ], [ X2 ], [ X3 ] )$ /* Matrix. */ X(A) := XMatrix[A+1,1]$ /* Tensor. */ GMatrix: matrix( [ G00, G10, G20, G30 ] /* Matrix. */ , [ G10, G11, G21, G31 ] , [ G20, G21, G22, G32 ] , [ G30, G31, G32, G33 ] )$ depends( [ G00, G10, G20, G30, G11, G21, G31, G22, G32, G33 ] , [ X0, X1, X2, X3 ] )$ G(A,B) := GMatrix[A+1,B+1]$ /* Tensor. */ GInvMatrix: matrix( [ GI00, GI10, GI20, GI30 ] /* Matrix. */ , [ GI10, GI11, GI21, GI31 ] , [ GI20, GI21, GI22, GI32 ] , [ GI30, GI31, GI32, GI33 ] )$ depends( [ GI00, GI10, GI20, GI30, GI11, GI21, GI31, GI22, GI32, GI33 ] , [ X0, X1, X2, X3 ] )$ GInv(A,B) := GInvMatrix[A+1,B+1]$ /* Tensor. */ /**********************************************************************/ /* Equation (4), highest-order pure time (i.e. X0) derivatives. */ D: matrix( [ diff(G00,X0,1) ] , [ diff(G10,X0,1) ] , [ diff(G20,X0,1) ] , [ diff(G30,X0,1) ] , [ diff(G11,X0,2) ] , [ diff(G21,X0,2) ] , [ diff(G31,X0,2) ] , [ diff(G22,X0,2) ] , [ diff(G32,X0,2) ] , [ diff(G33,X0,2) ] )$ /**********************************************************************/ /* Equation (8): Christoffel symbol of the second kind: Gamma. ***** C * * * * * A B */ Gamma(A,B,C) := sum( GInv(C,D)*FirstKind(A,B,D), D, 0, 3 )$ /**********************************************************************/ /* Equation (11): partial derivative of the inverse metric pd(g^{AB})/pd(x^C). */ PDGInvPDC( A, B, C ) := - sum( sum( GInv(A,D)*GInv(B,E)*diff(G(D,E),X(C)), D, 0, 3 ), E, 0, 3 )$ /**********************************************************************/ /* Equation (13): Christoffel symbol of the first kind: [A B, C]. */ FirstKind(A,B,C) := (1/2)*( diff(G(A,C),X(B)) + diff(G(B,C),X(A)) - diff(G(A,B),X(C)) )$ /**********************************************************************/ /* Equation (7): Ricci tensor. */ RicciTensorElement(A,B) := sum( diff(Gamma(A,B,C),X(C)), C, 0, 3 ) - sum( diff(Gamma(A,C,C),X(B)), C, 0, 3 ) + sum( sum( Gamma(A,B,D)*Gamma(C,D,C), C, 0, 3), D, 0, 3 ) - sum( sum( Gamma(A,C,D)*Gamma(B,D,C), C, 0, 3), D, 0, 3 )$ RicciMatrix: genmatrix( lambda( [A,B], RicciTensorElement(A-1,B-1) ), 4, 4 )$ RicciTensor(A,B) := RicciMatrix[A+1,B+1]$ /* Replace derivatives of the inverse metric. */ for A: 0 thru 3 do for B: 0 thru 3 do for C: 0 thru 3 do RicciMatrix: subst( PDGInvPDC(A,B,C), diff(GInv(A,B),X(C)), RicciMatrix )$ /**********************************************************************/ /* Equation (6): Einstein tensor. */ EinsteinMatrix: genmatrix ( lambda ( [I,J] , RicciMatrix[I,J] - (1/2) * GMatrix[I,J] * sum( sum( GInvMatrix[K,L] * RicciMatrix[K,L], L, 1, 4), K, 1, 4) ) , 4, 4 )$ EinsteinTensor(A,B) := EinsteinMatrix[A+1,B+1]$ /**********************************************************************/ /* Equation (18): Q. */ Q( A, B, C, D ) := factor ( sum ( sum ( GInv(E,F) * ( diff( FirstKind( A, B, F ), X(E) ) - diff( FirstKind( A, E, F ), X(B) ) ) , F, D[1], D[2] ) , E, C[1], C[2] ) )$ /**********************************************************************/ /* Equation (19): P. */ P( A, B, C, D, E, F ) := factor ( sum ( sum ( sum ( sum ( GInv(K,L) * GInv(M,N) * ( FirstKind( A, K, M ) * FirstKind( B, L, N ) - FirstKind( A, B, M ) * FirstKind( K, L, N ) ) , N, F[1], F[2] ) , M, E[1], E[2] ) , L, D[1], D[2] ) , K, C[1], C[2] ) )$ /**********************************************************************/ /* Equation (20): check Ricci tensor equation using P and Q. */ for A: 0 thru 3 do for B: 0 thru 3 do if( 0 # ratsimp( RicciTensor(A,B) - ( Q(A,B,[0,3],[0,3]) + P(A,B,[0,3],[0,3],[0,3],[0,3]) ) ) ) then error( "ERROR: Ricci tensor equation (20) is incorrect." )$ "SUCCESS: Equation (20) for Ricci tensor checked."$ /**********************************************************************/ /* Equation (21): check Einstein tensor equation using P and Q. */ for A: 0 thru 3 do for B: 0 thru 3 do if( 0 # ratsimp( EinsteinTensor(A,B) - ( Q(A,B,[0,3],[0,3]) - (1/2)*G(A,B) *sum( sum( GInv(C,D)*Q(C,D,[0,3],[0,3]), D,0,3), C,0,3) + P(A,B,[0,3],[0,3],[0,3],[0,3]) - (1/2)*G(A,B) *sum(sum( GInv(C,D)*P(C,D,[0,3],[0,3],[0,3],[0,3]) , D, 0, 3), C, 0, 3 ) ) ) ) then error( "ERROR: Einstein tensor equation (21) is incorrect." )$ "SUCCESS: Equation (21) for Einstein tensor checked."$ /**********************************************************************/ /* Theorem 1: check that HIP time (i.e. X0) derivatives are agree with equation (4). */ for I: 1 thru length(D) do if( derivdegree(EinsteinMatrix,part(D[I,1],1),part(D[I,1],2)) # part(D[I,1],3) ) then error( "ERROR: HIP derivative", I, "incorrect" )$ "SUCCESS: Theorem 1 checked."$ /**********************************************************************/ /* Theorem 2: check linearity of Einstein matrix in HIP time derivatives. */ for I: 1 thru length(EinsteinMatrix) do for J: 1 thru I do block ( [Coeffs,Remainder,K] , Coeffs: zeromatrix(1,length(D)) , for K: 1 thru length(D) do Coeffs[1,K]: coeff(EinsteinMatrix[I,J],D[K,1]) , Remainder: EinsteinMatrix[I,J] - Coeffs . D , for K: 1 thru length(D) do if( not ( freeof(Coeffs,D[K,1]) and freeof(Remainder,D[K,1]) ) ) then error( "ERROR: EinsteinMatrix[",I,",",J,"] not linear in D[",K,"]." ) , if( 0 # ratsimp( EinsteinMatrix[I,J] - (Coeffs . D + Remainder) ) ) then error( "ERROR: linearity test for Theorem 2 failed." ) )$ "SUCCESS: Theorem 2 checked."$ /**********************************************************************/ /* Data and helper functions for checking the Appendices. */ /* Detect if a index is present in the P and Q arrays. */ IList: [0,I]$ JList: [0,J]$ KList: [0,K]$ LList: [0,L]$ MList: [0,M]$ NList: [0,N]$ /* Lexical sorting order for symbolic indices. */ Order[I]: 0$ Order[J]: 1$ Order[K]: 2$ Order[L]: 3$ Order[M]: 4$ Order[N]: 5$ /* Split ranges into 0 and [1,3]. */ Range: [ [0,0], [1,3] ]$ /* GInv(A,B), unordered indices. */ GIU(A,B) := if( integerp(A) and integerp(B) ) then if (A Order[B] ) ) ) then GI( B, A ) else GI( A, B )$ /* First partial derivative of g_{ab}, unordered indices. */ PXU(A,B,C) := if( integerp(A) and integerp(B) ) then if (A Order[B] ) ) ) then PX( B, A, C ) else PX( A, B, C )$ /* Second partial derivative of g_{ab}, unordered indices. */ PXXU(A,B,C,D) := if( ( A = 0 ) or ( ( B # 0 ) and ( Order[A] > Order[B] ) ) ) then if( ( D = 0 ) or ( ( C # 0 ) and ( Order[C] > Order[D] ) ) ) then PXX( B, A, D, C ) else PXX( B, A, C, D ) else if( ( D = 0 ) or ( ( C # 0 ) and ( Order[C] > Order[D] ) ) ) then PXX( A, B, D, C ) else PXX( A, B, C, D )$ /* Christoffel symmbol of the 1st kind, unordered indices. */ C1U(A,B,C) := Half*(PXU(A,C,B)+PXU(B,C,A)-PXU(A,B,C))$ /* Partial derivative of C1U, unordered indices. */ PC1PXU(A,B,C,D) := Half*( PXXU(A,C,D,B) + PXXU(B,C,D,A) - PXXU(A,B,D,C))$ /**********************************************************************/ /* CheckExpanded -- in case the expressions in the Appendices for Q and P are not equal to the formulas for Q and P, expand the indices numerically to check for equality. This is slower, so it is only tried if the symbolic check for equality fails. */ CheckExpanded( Expression, Formula, Prefix, ArgList, ArgNumList ) := block ( [ExpandedExpression, ExpandedFormula, TempK, TempL, TempM, TempN] , ExpandedExpression: sum ( sum ( sum ( sum ( ev( Expression, K:TempK, L:TempL, M:TempM, N:TempN) , TempN, Range[ArgNumList[6]][1], Range[ArgNumList[6]][2] ) , TempM, Range[ArgNumList[5]][1], Range[ArgNumList[5]][2] ) , TempL, Range[ArgNumList[4]][1], Range[ArgNumList[4]][2] ) , TempK, Range[ArgNumList[3]][1], Range[ArgNumList[3]][2] ) , ExpandedFormula: sum ( sum ( sum ( sum ( ev( Formula, K:TempK, L:TempL, M:TempM, N:TempN) , TempN, Range[ArgNumList[6]][1], Range[ArgNumList[6]][2] ) , TempM, Range[ArgNumList[5]][1], Range[ArgNumList[5]][2] ) , TempL, Range[ArgNumList[4]][1], Range[ArgNumList[4]][2] ) , TempK, Range[ArgNumList[3]][1], Range[ArgNumList[3]][2] ) , ExpandedFormula: subst( [PX = PXU, GI=GIU], ExpandedFormula ) , ExpandedFormula: ev( ExpandedFormula ) , ExpandedFormula: ratsimp( ExpandedFormula ) , return( ratsimp( ExpandedExpression - ExpandedFormula ) ) )$ /**********************************************************************/ /* Check -- check the expressions in the Appendices for Q and P to see if they are equal to the formulas for Q and P. They are first compared symbolically because this is relatively fast, but if that fails, call CheckExpanded to expand the indices numerically, which is slower. */ Check( Expression, Formula, Prefix, ArgList, ArgNumList ) := if( 0 # ratsimp( Expression - Formula ) ) /* Try symbolic version first. */ then ( /* If that didn't work, try expanding indices to integers. */ if( 0 # CheckExpanded( Expression, Formula, Prefix, ArgList, ArgNumList ) ) then ( grind( "Expression: ", Expression ) , grind( "Formula: ", Formula ) , error( "ERROR in ", Prefix, ArgList ) ) )$ /*####################################################################*/ /* Appendix I. */ Q[0,0,0,0]: 0$ Q[0,0,0,L]: 0$ Q[0,0,K,0]: 0$ Q[0,0,K,L]: Half*GI(K,L)*(PXX(L,0,0,K)-PXX(0,0,K,L)-PXX(K,L,0,0)+PXX(K,0,0,L))$ Q[0,J,0,0]: 0$ Q[0,J,0,L]: Half*GI(L,0)*(PXX(J,L,0,0)-PXX(J,0,0,L)-PXX(L,0,0,J)+PXX(0,0,J,L))$ Q[0,J,K,0]: 0$ Q[0,J,K,L]: Half*GI(K,L)*(PXX(J,L,0,K)-PXX(J,0,K,L)-PXX(K,L,0,J)+PXX(K,0,J,L))$ Q[I,0,0,0]: 0$ Q[I,0,0,L]: 0$ Q[I,0,K,0]: Half*GI(K,0)*(PXX(0,0,I,K)-PXX(I,0,0,K)-PXX(K,0,0,I)+PXX(I,K,0,0))$ Q[I,0,K,L]: Half*GI(K,L)*(PXX(L,0,I,K)-PXX(I,0,K,L)-PXX(K,L,0,I)+PXX(I,K,0,L))$ Q[I,J,0,0]: Half*GI(0,0)*(PXX(J,0,0,I)-PXX(I,J,0,0)-PXX(0,0,I,J)+PXX(I,0,0,J))$ Q[I,J,0,L]: Half*GI(L,0)*(PXX(J,L,0,I)-PXX(I,J,0,L)-PXX(L,0,I,J)+PXX(I,0,J,L))$ Q[I,J,K,0]: Half*GI(K,0)*(PXX(J,0,I,K)-PXX(I,J,0,K)-PXX(K,0,I,J)+PXX(I,K,0,J))$ Q[I,J,K,L]: Half*GI(K,L)*(PXX(J,L,I,K)-PXX(I,J,K,L)-PXX(K,L,I,J)+PXX(I,K,J,L))$ QEquation(A,B,C,D) := GIU(C,D)*( PC1PXU(A,B,D,C) - PC1PXU(A,C,D,B) )$ for A: 1 thru 2 do for B: 1 thru 2 do for C: 1 thru 2 do for D: 1 thru 2 do Check( Q[ IList[A], JList[B], KList[C], LList[D] ] , QEquation( IList[A], JList[B], KList[C], LList[D] ) , 'Q , [IList[A],JList[B],KList[C],LList[D]] , [A,B,C,D,1,1] )$ "SUCCESS: Appendix I checked."$ /*####################################################################*/ /* Appendix II. */ P[0,0,0,0,0,0]: 0$ P[0,0,0,0,0,N]: 0$ P[0,0,0,0,M,0]: 0$ P[0,0,0,0,M,N]: 0$ P[0,0,0,L,0,0]: 0$ P[0,0,0,L,0,N]: 0$ P[0,0,0,L,M,0]: 0$ P[0,0,0,L,M,N]: 0$ P[0,0,K,0,0,0]: 0$ P[0,0,K,0,0,N]:Fourth*GI(K,0)*GI(N,0) *(PX(0,0,K)*(2*PX(N,0,0)-PX(0,0,N)) -PX(0,0,0)*(PX(K,N,0)+PX(N,0,K)-PX(K,0,N)) )$ P[0,0,K,0,M,0]:Fourth*GI(K,0)*GI(M,0) *((PX(M,0,K)+PX(K,M,0)-PX(K,0,M))*PX(0,0,0) -(2*PX(M,0,0)-PX(0,0,M))*PX(0,0,K) )$ P[0,0,K,0,M,N]:0$ P[0,0,K,L,0,0]:Fourth*GI(K,L)*GI(0,0) *(PX(0,0,K)*PX(0,0,L) -PX(0,0,0)*(PX(K,0,L)+PX(L,0,K)-PX(K,L,0)) )$ P[0,0,K,L,0,N]:Fourth*GI(K,L)*GI(N,0) *(PX(0,0,K)*(PX(N,0,L)+PX(L,N,0)-PX(L,0,N)) -PX(0,0,0)*(PX(K,N,L)+PX(L,N,K)-PX(K,L,N)) )$ P[0,0,K,L,M,0]:Fourth*GI(K,L)*GI(M,0) *((PX(M,0,K)+PX(K,M,0)-PX(K,0,M))*PX(0,0,L) -(2*PX(M,0,0)-PX(0,0,M))*(PX(K,0,L)+PX(L,0,K)-PX(K,L,0)) )$ P[0,0,K,L,M,N]:Fourth*GI(K,L)*GI(M,N) *((PX(M,0,K)+PX(K,M,0)-PX(K,0,M))*(PX(N,0,L)+PX(L,N,0)-PX(L,0,N)) -(PX(K,N,L)+PX(L,N,K)-PX(K,L,N))*(2*PX(M,0,0)-PX(0,0,M)) )$ P[0,J,0,0,0,0]:0$ P[0,J,0,0,0,N]:Fourth*GI(0,0)*GI(N,0) *(PX(0,0,0)*(PX(J,N,0)+PX(N,0,J)-PX(J,0,N)) -PX(0,0,J)*(2*PX(N,0,0)-PX(0,0,N)) )$ P[0,J,0,0,M,0]:Fourth*GI(0,0)*GI(M,0) *((2*PX(M,0,0)-PX(0,0,M))*PX(0,0,J) -(PX(M,0,J)+PX(J,M,0)-PX(J,0,M))*PX(0,0,0) )$ P[0,J,0,0,M,N]:0$ P[0,J,0,L,0,0]:Fourth*GI(L,0)*GI(0,0) *(PX(0,0,0)*(PX(J,0,L)+PX(L,0,J)-PX(J,L,0)) -PX(0,0,J)*PX(0,0,L) )$ P[0,J,0,L,0,N]:Fourth*GI(L,0)*GI(N,0) *(PX(0,0,0)*(PX(J,N,L)+PX(L,N,J)-PX(J,L,N)) -PX(0,0,J)*(PX(N,0,L)+PX(L,N,0)-PX(L,0,N)) )$ P[0,J,0,L,M,0]:Fourth*GI(L,0)*GI(M,0) *((2*PX(M,0,0)-PX(0,0,M))*(PX(J,0,L)+PX(L,0,J)-PX(J,L,0)) -(PX(M,0,J)+PX(J,M,0)-PX(J,0,M))*PX(0,0,L) )$ P[0,J,0,L,M,N]:Fourth*GI(L,0)*GI(M,N) *((2*PX(M,0,0)-PX(0,0,M))*(PX(J,N,L)+PX(L,N,J)-PX(J,L,N)) -(PX(M,0,J)+PX(J,M,0)-PX(J,0,M))*(PX(N,0,L)+PX(L,N,0)-PX(L,0,N)) )$ P[0,J,K,0,0,0]:0$ P[0,J,K,0,0,N]:Fourth*GI(K,0)*GI(N,0) *(PX(0,0,K)*(PX(J,N,0)+PX(N,0,J)-PX(J,0,N)) -PX(0,0,J)*(PX(K,N,0)+PX(N,0,K)-PX(K,0,N)) )$ P[0,J,K,0,M,0]:Fourth*GI(K,0)*GI(M,0) *((PX(M,0,K)+PX(K,M,0)-PX(K,0,M))*PX(0,0,J) -(PX(M,0,J)+PX(J,M,0)-PX(J,0,M))*PX(0,0,K) )$ P[0,J,K,0,M,N]:0$ P[0,J,K,L,0,0]:Fourth*GI(K,L)*GI(0,0) *(PX(0,0,K)*(PX(J,0,L)+PX(L,0,J)-PX(J,L,0)) -PX(0,0,J)*(PX(K,0,L)+PX(L,0,K)-PX(K,L,0)) )$ P[0,J,K,L,0,N]:Fourth*GI(K,L)*GI(N,0) *(PX(0,0,K)*(PX(J,N,L)+PX(L,N,J)-PX(J,L,N)) -PX(0,0,J)*(PX(K,N,L)+PX(L,N,K)-PX(K,L,N)) )$ P[0,J,K,L,M,0]:Fourth*GI(K,L)*GI(M,0) *((PX(M,0,K)+PX(K,M,0)-PX(K,0,M))*(PX(J,0,L)+PX(L,0,J)-PX(J,L,0)) -(PX(M,0,J)+PX(J,M,0)-PX(J,0,M))*(PX(K,0,L)+PX(L,0,K)-PX(K,L,0)) )$ P[0,J,K,L,M,N]:Fourth*GI(K,L)*GI(M,N) *((PX(M,0,K)+PX(K,M,0)-PX(K,0,M))*(PX(J,N,L)+PX(L,N,J)-PX(J,L,N)) -(PX(M,0,J)+PX(J,M,0)-PX(J,0,M))*(PX(K,N,L)+PX(L,N,K)-PX(K,L,N)) )$ P[I,0,0,0,0,0]:0$ P[I,0,0,0,0,N]:0$ P[I,0,0,0,M,0]:0$ P[I,0,0,0,M,N]:0$ P[I,0,0,L,0,0]:0$ P[I,0,0,L,0,N]:0$ P[I,0,0,L,M,0]:0$ P[I,0,0,L,M,N]:0$ P[I,0,K,0,0,0]:Fourth*GI(K,0)*GI(0,0) *((PX(I,0,K)+PX(K,0,I)-PX(I,K,0))*PX(0,0,0) -PX(0,0,I)*PX(0,0,K) )$ P[I,0,K,0,0,N]:Fourth*GI(K,0)*GI(N,0) *((PX(I,0,K)+PX(K,0,I)-PX(I,K,0))*(2*PX(N,0,0)-PX(0,0,N)) -PX(0,0,I)*(PX(K,N,0)+PX(N,0,K)-PX(K,0,N)) )$ P[I,0,K,0,M,0]:Fourth*GI(K,0)*GI(M,0) *((PX(I,M,K)+PX(K,M,I)-PX(I,K,M))*PX(0,0,0) -(PX(I,M,0)+PX(M,0,I)-PX(I,0,M))*PX(0,0,K) )$ P[I,0,K,0,M,N]:Fourth*GI(K,0)*GI(M,N) *((PX(I,M,K)+PX(K,M,I)-PX(I,K,M))*(2*PX(N,0,0)-PX(0,0,N)) -(PX(I,M,0)+PX(M,0,I)-PX(I,0,M))*(PX(K,N,0)+PX(N,0,K)-PX(K,0,N)) )$ P[I,0,K,L,0,0]:Fourth*GI(K,L)*GI(0,0) *((PX(I,0,K)+PX(K,0,I)-PX(I,K,0))*PX(0,0,L) -PX(0,0,I)*(PX(K,0,L)+PX(L,0,K)-PX(K,L,0)) )$ P[I,0,K,L,0,N]:Fourth*GI(K,L)*GI(N,0) *((PX(I,0,K)+PX(K,0,I)-PX(I,K,0))*(PX(N,0,L)+PX(L,N,0)-PX(L,0,N)) -PX(0,0,I)*(PX(K,N,L)+PX(L,N,K)-PX(K,L,N)) )$ P[I,0,K,L,M,0]:Fourth*GI(K,L)*GI(M,0) *((PX(I,M,K)+PX(K,M,I)-PX(I,K,M))*PX(0,0,L) -(PX(I,M,0)+PX(M,0,I)-PX(I,0,M))*(PX(K,0,L)+PX(L,0,K)-PX(K,L,0)) )$ P[I,0,K,L,M,N]:Fourth*GI(K,L)*GI(M,N) *((PX(I,M,K)+PX(K,M,I)-PX(I,K,M))*(PX(N,0,L)+PX(L,N,0)-PX(L,0,N)) -(PX(I,M,0)+PX(M,0,I)-PX(I,0,M))*(PX(K,N,L)+PX(L,N,K)-PX(K,L,N)) )$ P[I,J,0,0,0,0]:Fourth*GI(0,0)^2 *(PX(0,0,I)*PX(0,0,J) -(PX(I,0,J)+PX(J,0,I)-PX(I,J,0))*PX(0,0,0) )$ P[I,J,0,0,0,N]:Fourth*GI(0,0)*GI(N,0) *(PX(0,0,I)*(PX(J,N,0)+PX(N,0,J)-PX(J,0,N)) -(PX(I,0,J)+PX(J,0,I)-PX(I,J,0))*(2*PX(N,0,0)-PX(0,0,N)) )$ P[I,J,0,0,M,0]:Fourth*GI(0,0)*GI(M,0) *((PX(I,M,0)+PX(M,0,I)-PX(I,0,M))*PX(0,0,J) -(PX(I,M,J)+PX(J,M,I)-PX(I,J,M))*PX(0,0,0) )$ P[I,J,0,0,M,N]:Fourth*GI(0,0)*GI(M,N) *((PX(I,M,0)+PX(M,0,I)-PX(I,0,M))*(PX(J,N,0)+PX(N,0,J)-PX(J,0,N)) -(PX(I,M,J)+PX(J,M,I)-PX(I,J,M))*(2*PX(N,0,0)-PX(0,0,N)) )$ P[I,J,0,L,0,0]:Fourth*GI(L,0)*GI(0,0) *(PX(0,0,I)*(PX(J,0,L)+PX(L,0,J)-PX(J,L,0)) -(PX(I,0,J)+PX(J,0,I)-PX(I,J,0))*PX(0,0,L) )$ P[I,J,0,L,0,N]:Fourth*GI(L,0)*GI(N,0) *(PX(0,0,I)*(PX(J,N,L)+PX(L,N,J)-PX(J,L,N)) -(PX(I,0,J)+PX(J,0,I)-PX(I,J,0))*(PX(N,0,L)+PX(L,N,0)-PX(L,0,N)) )$ P[I,J,0,L,M,0]:Fourth*GI(L,0)*GI(M,0) *((PX(I,M,0)+PX(M,0,I)-PX(I,0,M))*(PX(J,0,L)+PX(L,0,J)-PX(J,L,0)) -(PX(I,M,J)+PX(J,M,I)-PX(I,J,M))*PX(0,0,L) )$ P[I,J,0,L,M,N]:Fourth*GI(L,0)*GI(M,N) *((PX(I,M,0)+PX(M,0,I)-PX(I,0,M))*(PX(J,N,L)+PX(L,N,J)-PX(J,L,N)) -(PX(I,M,J)+PX(J,M,I)-PX(I,J,M))*(PX(N,0,L)+PX(L,N,0)-PX(L,0,N)) )$ P[I,J,K,0,0,0]:Fourth*GI(K,0)*GI(0,0) *((PX(I,0,K)+PX(K,0,I)-PX(I,K,0))*PX(0,0,J) -(PX(I,0,J)+PX(J,0,I)-PX(I,J,0))*PX(0,0,K) )$ P[I,J,K,0,0,N]:Fourth*GI(K,0)*GI(N,0) *((PX(I,0,K)+PX(K,0,I)-PX(I,K,0))*(PX(J,N,0)+PX(N,0,J)-PX(J,0,N)) -(PX(I,0,J)+PX(J,0,I)-PX(I,J,0))*(PX(K,N,0)+PX(N,0,K)-PX(K,0,N)) )$ P[I,J,K,0,M,0]:Fourth*GI(K,0)*GI(M,0) *((PX(I,M,K)+PX(K,M,I)-PX(I,K,M))*PX(0,0,J) -(PX(I,M,J)+PX(J,M,I)-PX(I,J,M))*PX(0,0,K) )$ P[I,J,K,0,M,N]:Fourth*GI(K,0)*GI(M,N) *((PX(I,M,K)+PX(K,M,I)-PX(I,K,M))*(PX(J,N,0)+PX(N,0,J)-PX(J,0,N)) -(PX(I,M,J)+PX(J,M,I)-PX(I,J,M))*(PX(K,N,0)+PX(N,0,K)-PX(K,0,N)) )$ P[I,J,K,L,0,0]:Fourth*GI(K,L)*GI(0,0) *((PX(I,0,K)+PX(K,0,I)-PX(I,K,0))*(PX(J,0,L)+PX(L,0,J)-PX(J,L,0)) -(PX(I,0,J)+PX(J,0,I)-PX(I,J,0))*(PX(K,0,L)+PX(L,0,K)-PX(K,L,0)) )$ P[I,J,K,L,0,N]:Fourth*GI(K,L)*GI(N,0) *((PX(I,0,K)+PX(K,0,I)-PX(I,K,0))*(PX(J,N,L)+PX(L,N,J)-PX(J,L,N)) -(PX(I,0,J)+PX(J,0,I)-PX(I,J,0))*(PX(K,N,L)+PX(L,N,K)-PX(K,L,N)) )$ P[I,J,K,L,M,0]:Fourth*GI(K,L)*GI(M,0) *((PX(I,M,K)+PX(K,M,I)-PX(I,K,M))*(PX(J,0,L)+PX(L,0,J)-PX(J,L,0)) -(PX(I,M,J)+PX(J,M,I)-PX(I,J,M))*(PX(K,0,L)+PX(L,0,K)-PX(K,L,0)) )$ P[I,J,K,L,M,N]:Fourth*GI(K,L)*GI(M,N) *((PX(I,M,K)+PX(K,M,I)-PX(I,K,M))*(PX(J,N,L)+PX(L,N,J)-PX(J,L,N)) -(PX(I,M,J)+PX(J,M,I)-PX(I,J,M))*(PX(K,N,L)+PX(L,N,K)-PX(K,L,N)) )$ PEquation( A, B, C, D, E, F ) := GIU(C,D)*GIU(E,F)*( C1U(A,C,E)*C1U(B,D,F) - C1U(A,B,E)*C1U(C,D,F) )$ for A: 1 thru 2 do for B: 1 thru 2 do for C: 1 thru 2 do for D: 1 thru 2 do for E: 1 thru 2 do for F: 1 thru 2 do block ( [Temp] , Temp: subst( Half^2, Fourth, P[ IList[A], JList[B], KList[C], LList[D], MList[E], NList[F] ] ) , Check( Temp , PEquation( IList[A], JList[B], KList[C], LList[D], MList[E], NList[F] ) , 'P , [IList[A],JList[B],KList[C],LList[D],MList[E],NList[F]] , [A,B,C,D,E,F] ) )$ "SUCCESS: Appendix II checked."$ /*####################################################################*/ "SUCCESS: All checks succeeded."$